2015 Pilot Project Awards

Our Pilot Projects Program is one of the main ways we fund environmental health research. 

Facilitating real-time exposure studies on traffic related air pollution

Keith Bein, PhD

Air Quality Research Center

Toxicological studies continue to demonstrate links between exposures to traffic related air pollution (TRAP), including gases and particles, and various metrics of adverse pulmonary, cardiovascular and neurological health effects.

The key challenge in these studies is replicating true human exposure in models that mimic human biology on accelerated time scales with sufficient resolution in physiological and/or behavioral response to demonstrate statistical significance. A core need is an exposure paradigm that addresses these issues in a robust and dependable manner.

It is hypothesized that a roadway tunnel system provides a platform that maximizes signal-to-noise ratio and minimizes bias by allowing for real-time exposure to concentrated ambient TRAP.

The objective of this project is to design, construct, implement and characterize a mobile vivarium. The expected outcome from this project is a facility that will reliably and accurately assess the health effects of exposure to TRAP.

This facility will provide full physical and chemical characterization of the exposure environment.

Gastrointestinal pathophysiology following early life environmental exposure

Melanie Gareau, PhD

Anatomy, Physiology and Cell Biology

The microbiota-gut-brain axis (MGB axis) is an important pathway for maintaining health and well-being. Disruptions in the axis have been identified in numerous disease states, including inflammatory bowel disease, diabetes and autism spectrum disorder.

Early development is an important life stage for normal establishment of the microbiota, development of the gastrointestinal (GI) tract and neurobiological growth and maturation, which together modulate the MGB axis. Exposure to pathophysiological stimuli, for example neurotoxicants, during this important developmental period can have long-term consequences on overall health and well-being.

We propose to study GI function following exposure to polychlorinated biphenyls (PCB) during gestation and lactation in mice. We will use samples collected from animals used in ongoing studies funded to examine cognition following developmental exposures.

We hypothesize that PCB exposure during early development will lead to GI and microbiota defects. These studies will determine whether environmental exposures to potential neurotoxicants can lead to changes in GI physiology and contribute to long-lasting changes in the MGB axis.

Postnatal neuroimmune integration of environmental stresses 

Colin Reardon, PhD

Anatomy, Physiology and Cell Biology

Over the last 40 years, epidemiological studies have shown a disturbing trend of increasing incidence of allergic asthma in children. A wide range of stressors in the womb or during early life can increase the risk of developing allergic childhood asthma. Given the broad spectrum of stressors, it is likely that numerous systems in the body (i.e., the nervous and immune systems) contribute to the observed increase in allergic childhood asthma.

Specialized tissues in the body serve to coordinate immune responses and are required for the development of allergic asthma. These tissues are still developing in the lung during early life and receive signals from various systems that control body functions.

 We hypothesize that the developing tracheal- and bronchial-associated mediastinal lymph nodes are critical sites where environmental exposures change normal development and set the stage for allergic asthma. The stages of development in humans and other primates is not clear.

This study will first examine normal development and the consequences of environmental exposures on immune cells.

Maternal metabolome, PON1 Status, organophosphate exposure and childhood autism

Carolyn Slupsky, PhD


With the rapid rise in autism spectrum disorder (ASD) diagnoses over the last three decades, identification of the causes and mechanisms of this condition is urgently needed.

Building on recent findings that children prenatally exposed to pesticides have an increased risk of an ASD diagnosis, serum from children was previously analyzed. A distinct metabolic pattern was found in children with ASD who were exposed to pesticides in utero that revealed associations with insulin regulation.

Given the correlation between insulin resistance and decreased activity of paraoxonase 1 (PON1), an enzyme involved in detoxification, we hypothesize that exposure to pesticides during pregnancy coupled with reduced maternal PON1 activity is associated with the metabolic health of the mother and the neurological outcome and metabolic health of her child.

Most of the evidence about environmental factors in autism provides sparse information about the biologic mechanisms of neurodevelopment. This project seeks to generate preliminary data on perturbations in basic biochemical pathways and reduced PON1 status as a consequence of pesticide exposure, and its association with autism in children.

Dysregulation of microRNAs in ocular tissue exposed to cigarette smoke

Zeljka Smit-McBride, PhD

Ophthalmology and Vision Science

Age-related macular degeneration (AMD), a blinding disease having both genetic and environmental components, is the most common form of visual impairment in elderly individuals of the Western world, and smoking is the leading identified associated environmental insult.

Recently, a central regulatory role for a novel type of molecule, microRNA (miRNA), had been discovered in many human diseases. MiRNAs are considered to be master regulatory switches, playing roles in stem cell differentiation, aging, epigenetics, etc. Although knowledge about miRNAs and their functions is rapidly accumulating, their roles in healthy ocular aging vs. age-related pathologies in the eye is lacking.

Our long-term goal is to elucidate the regulatory role of miRNAs in the eye during normal aging and disease. The goal of this project is to address how circulatory miRNA populations change during normal eye aging, and how that process is accelerated and dysregulated during heightened level of environmental insult such as chronic exposure to cigarette smoke.

Our central hypothesis is that normal age-related homeostatic processes whose failure causes/allows the transition from healthy aging to disease are regulated by miRNAs. We will determine which miRNAs show aging-related change of expression using a primate model, and then determine which miRNAs show environmental insult-related changes of expression using a primate model and chronic exposure to cigarette smoke.

Identification of eye-specific miRNA will allow identification of novel strategies for intervention for blinding ocular diseases.

Role of environmental chemicals in the pathogenesis of autoimmune disease

Guo-Xiang Yang, MD, PhD

Internal Medicine

Although it is well known that environmental pollution poses significant health hazards, data on the environment and human autoimmunity are limited. This study examines the effects of a group of well-defined environmental pollutants on the immune functions of patients with systemic lupus erythematosus (SLE), a classical, systemic autoimmune disease.

Data from this work enhances our understanding on how chemical pollutants contribute to the development of SLE and provide insights on the etiology and clinical management of environmental-triggered autoimmune disease.


If you'd like more information about a particular project, please contact Ruth Williams (ruwilliams@ucdavis.edu) for details.